Crystal Structure

Communications

ISSN 0108-2701

A linear cyclic oximate-bridged tetracopper(II) complex ${ }^{1}$

Tian-Huey Lu, ${ }^{\text {a* }}$ Yung-Jan Lin, ${ }^{\text {b }}$ Hung Luh, ${ }^{\text {b }}$ Fen-Ling Liao ${ }^{\text {b }}$ and Chung-Sun Chung ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, and ${ }^{\mathbf{b}}$ Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300 Correspondence e-mail: thlu@phys.nthu.edu.tw

Received 8 January 2001
Accepted 3 October 2001
The crystal structure of the title complex, tetrakis $[\mu-6-\mathrm{am}-$ ino-3-methyl-4-azahex-3-en-2-one oximato(1-)- $\left.\kappa^{4} N, N^{\prime}, N^{\prime \prime}: O\right]$ tetracopper(II) tetraperchlorate 0.6 -hydrate, $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12}-\right.\right.$ $\left.\left.\mathrm{N}_{3} \mathrm{O}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}$, shows the cation to be an oximatebridged tetramer composed of four 6-amino-3-methyl-4-aza-hex-3-en-2-one oxime ligands and four copper(II) ions and to have crystallographically imposed $\overline{4}$ symmetry. Each $\mathrm{Cu}^{\mathrm{II}}$ atom is four-coordinated by the three N atoms of one oxime ligand and by the O atom of another oxime ligand in a distorted square-planar geometry.

Comment

Studies on multinuclear copper(II) complexes have focused on the magneto-structural relationships and characterization of the active site in multicopper proteins (Alagi et al., 1997). Linear, di- and trinuclear copper(II) complexes with oximate groups ($\mathrm{C}=\mathrm{N}-\mathrm{O}^{-}$) have been widely studied (Cervera et al., 1997; Dominguezvera et al., 1997; Luneau et al., 1989), but tetranuclear copper(II) complexes occur less frequently. In the present study, the isolation and X-ray structure of the tetranuclear copper(II) complex tetrakis[μ-6-amino-3-methyl-4-azahex-3-en-2-one oximato(1-)- $\left.\kappa^{4} N, N^{\prime}, N^{\prime \prime}: O\right]$ tetracopper(II) tetraperchlorate 0.6 -hydrate, (I), is reported.

 $\cdot 4 \mathrm{ClO}_{4}^{-} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}$

Each Cu ion in the structure is coordinated by three N atoms from one 6-amino-3-methyl-4-aza-hex-3-en-2-one

[^0]oximate ligand $\left(L^{-}\right)$and by the oxime O atom from a second L^{-}ligand in a distorted square-planar arrangement. The O1, $\mathrm{N} 1, \mathrm{~N} 2$ and N 3 donor atoms are planar within 0.124 (2) \AA, and the Cu atom deviates by 0.129 (2) \AA from this plane. Four of these $\mathrm{Cu} L$ subunits are linked into a discrete tetrameric cation which has $\overline{4}$ crystallographic symmetry (Fig. 1) and which contains a 12 -membered heterocyclic ring of composition $(\mathrm{Cu}, \mathrm{O} 1, \mathrm{~N} 3)_{4}$. The unit cell contains two of these tetramers.
Unlike the structures of square tetranuclear metal complexes in which the four metal ions lie in a plane (Chaudhuri et al., 1993; Maekawa et al., 1999), the central tetranuclear copper(II) core of the title complex has an 'openbutterfly' configuration with the four copper(II) ions located at the corners of a flattened tetrahedron and is much different from rhombic structures (Raper, 1997; Castro et al., 1995; Gomez-Garcia et al., 1992; Sletten et al., 1990; Tandon et al., 1991). The degree of distortion of the tetrahedron is indicated by the two $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 4.244 (1) \AA perpendicular to the c axis and the other four $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 3.469 (1) \AA within the tetramer. The oxime group adopts an out-of-plane coordination mode as a diatomic ($\mu-1,2$)-bridging ligand between copper(II) ions (Ruiz et al., 1998). The orientations of the oxime ligands in the tetramer are alternately up and down.

The $\mathrm{Cu} / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 2$ and $\mathrm{Cu} / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 2$ five-membered rings are in the skew form and are planar within 0.158 (5) and 0.051 (3) \AA, respectively. The $\mathrm{Cu}-\mathrm{N}$ bond lengths, ranging from 1.939 (4) to 2.004 (4) \AA, are considered normal coordination bonds. The order of the $\mathrm{Cu}-\mathrm{N}$ distances, i.e. amine [2.004 (4) \AA] $>$ oxime $[1.989$ (3) $\AA]>$ imine $[1.941$ (3) $\AA]$, is the same as that observed for other oximate-bridged $\mathrm{Cu}^{\text {II }}$ complexes (Nasakkala et al., 1981; Butcher et al., 1979). The $\mathrm{Cu}-\mathrm{O}$ (bridging oxime) distance $[1.941(3) \AA]$ is slightly longer than that found in these other oximate-bridged $\mathrm{Cu}^{\mathrm{II}}$ complexes because of the steric effect of the bulky folded conformation (Nasakkala et al., 1981; Butcher et al., 1979). Owing to the weak metal-ligand interactions in the title complex, the $\mathrm{N}-\mathrm{O}$ distance $[1.339$ (4) \AA] is longer than that

Figure 1
The structure of the title compound showing 30% probability displacement ellipsoids. Only the asymmetric part of the tetramer is labelled. The water molecule and the perchlorate ions have been omitted for clarity.
found in complexes with strongly coordinated bridging-oxime groups [1.311 (3) £ं; Raston et al., 1978; Butcher et al., 1979]. The bond angles of the oxime and imine N atoms are approximately 120°, in keeping with the expected $s p^{2}$-hybridization stabilized by π-bonding. The $N 3^{i}-\mathrm{O} 1-\mathrm{Cu}$ [112.7 (2) ${ }^{\circ}$; symmetry code: (i) $\left.\frac{3}{2}-y, x, \frac{1}{2}-z\right]$ angle indicates a variation from $s p^{2}$ hybridization for the oxime O atom, resulting from coordination to another Cu atom. The $\mathrm{N}-\mathrm{O}$ distance does show some decrease in going from the free ligand $(1.375 \AA)$ to complexes with weak interactions [1.339 (4) Å, this study] to complexes with strong interactions [1.311 (3) £ं; Raston et al., 1978; Butcher et al., 1979].

There appears to be a water molecule on a partially occupied site [occupancy $=0.30(3)$] on a twofold axis. This is external to the tetramer and is loosely held by hydrogen bonding to the perchlorate ion (Table 2). There are two equivalent sites on the axis that are 2.80 (3) \AA apart. Other hydrogen bonds are detailed in Table 2.

Experimental

The ligand 6 -amino-3-methyl-4-azahex-3-en-2-one oxime was prepared according to the method of Singh et al. (1977). Equimolar quantities of copper perchlorate hexahydrate and the ligand were mixed in methanol and the solution heated under reflux for 2 h . The resulting solution was cooled to room temperature and evaporated to dryness by rotatory evaporation. The crude product was washed with acetonitrile and recrystallized from methanol by slow evaporation.

Crystal data

$\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1232.32$
Tetragonal, $P 4_{2} / n$
$a=12.440$ (3) \AA
$c=14.851$ (7) \AA
$V=2298.2(12) \AA^{3}$
$Z=2$
$D_{x}=1.790 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical
(North et al., 1968)
$T_{\text {min }}=0.37, T_{\text {max }}=0.54$
3349 measured reflections
3349 independent reflections
1710 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.183$
$S=1.09$
3349 reflections
153 parameters

> Mo $K \alpha$ radiation Cell parameters from 25 reflections $\theta=5.4-17.3^{\circ}$ $\mu=2.15 \mathrm{~mm}^{-1}$ $T=293(2) \mathrm{K}$ Square bipyramidal, black $0.47 \times 0.34 \times 0.29 \mathrm{~mm}$ $\theta_{\text {max }}=30.0^{\circ}$ $h=0 \rightarrow 17$ $k=0 \rightarrow 17$ $l=0 \rightarrow 20$ 3 standard reflections frequency: 60 min intensity decay: 3%

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{N} 2$	$1.939(4)$	$\mathrm{Cu}-\mathrm{N} 3$	$1.989(3)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.941(3)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.004(4)$
			$84.26(16)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 1$	$165.50(16)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$	$99.28(16)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	$79.54(15)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$163.78(15)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	$96.66(15)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 1$	

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots$ O $^{\mathrm{i}}$	0.90	2.31	$3.181(6)$	164
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 3^{\mathrm{ii}}$	0.90	2.34	$3.158(8)$	151
$\mathrm{O} W-(\mathrm{H}) \cdots \mathrm{O}^{\mathrm{iii}}$			$3.305(10)$	

Symmetry codes: (i) $\frac{1}{2}-y, x, \frac{1}{2}-z$; (ii) $x, 1+y, z$; (iii) $1-y, \frac{1}{2}+x, \frac{1}{2}+z$.

H atoms were placed geometrically and refined as riding $(\mathrm{N}-\mathrm{H}=$ $0.90 \AA$ and $\mathrm{C}-\mathrm{H}=0.96$ or $0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}$ or O$)$. The water H atoms were not located. The largest peak in the difference map is near the Cu atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) and NRCVAX; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX.

The authors thank the National Science Council for support under grants NSC89-2112-M007-083 and NSC89-2113-M007032.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1319). Services for accessing these data are described at the back of the journal.

References

Alagi, F., Nakao, Y., Matsumoto, K., Takamizawa, S., Mori, W. \& Suzuki, S. (1997). Chem. Lett. pp. 181-182.

Butcher, R. J., O'Connor, C. J. \& Sinn, E. (1979). Inorg. Chem. 18, 1913-1918.
Castro, I., Sletten, J., Calatayud, M. L., Julve, M., Cano, J., Lloret, F. \& Caneschi, A. (1995). Inorg. Chem. 34, 4903-4909.
Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. \& Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-401.
Chaudhuri, P., Karpenstein, I., Winter, M., Lengen, M., Butzlaff, C., Bill, E., Trautwein, A. X., Florke, U. \& Haupt, H. J. (1993). Inorg. Chem. 32, 888894.

Dominguezvera, J. M., Colacio, E., Escuer, A., Klinga, M., Kivekas, R. \& Romerosa, A. (1997). Polyhedron, 16, 281-289.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gomez-Garcia, C. J., Coronado, E. \& Borras-Almenar, J. J. (1992). Inorg. Chem. 31, 1667-1673.
Luneau, D., Oshio, H., Okawa, H. \& Kida, S. (1989). Chem. Lett. pp. 443-444.
Maekawa, M., Munakata, M., Kuroda-Sowa, T., Suenaga, Y. \& Sugimoto, K. (1999). Inorg. Chem. Acta, 290, 153-158.

Nasakkala, M., Saarinen, H., Korvenranta, J. \& Nasakkala, E. (1981). Acta Chem. Scand. Ser. A, 35, 569-574.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.
Raston, C. L., Sharma, R. P., Skelton, B. W. \& White, A. H. (1978). Aust. J. Chem. 31, 745-755.
Ruiz, R., Lloret, F., Julve, M., Munoz, M. C. \& Solans, X. (1998). Inorg. Chim. Acta, 268, 263-269.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. University of Göttingen, Germany.
Singh, A. N., Singh, R. P., Mohanty, J. G. \& Chakravorty, A. (1977). Inorg. Chem. 16, 2597-2601.
Sletten, J., Sorensen, A., Julve, M. \& Journaux, Y. (1990). Inorg. Chem. 29, 5054-5058.
Tandon, S. S., Mandal, S. K., Thompson, L. K. \& Hynes, R. C. (1991). J. Chem. Soc. Chem. Commun. pp. 1572-1573.

[^0]: ${ }^{1}$ Contribution No. N216.

